Author: admin

Secure Federated Cloud Computing: Here’s How You Can Enable It

first_imgNo doubt you’ve been following Intel’s Cloud 2015 vision announcements. A core element of our strategy is the notion of “federated.” The federated cloud simply means that enterprises can procure compute capacity on demand and safely share data and compute across internal and external clouds. There are three key steps to enabling a federated cloud. First: Move your applications and data to the cloud or between clouds.Second: Have scale-out storage to recognize dispersion of data to need.Third: Ensure that your environment is secure and compliant.Move your application and data to the cloud or between cloudsYour enterprise may see a sudden surge in demand or may need to move its compute environment for business continuity. Traditionally to address such needs we would have to build redundancy or excess capacity in our environment. With a federated cloud one can move data and applications to the cloud or between clouds to address such needs, without building excess or redundant capacity. The reference architecture on cloud onboarding explains how we accomplish this critical business need via Cloud On-Boarding with Citrix OpenCloud* on the Intel platform.Scale-out storage can be implemented with Xeon-based servers and EthernetFederated cloud and explosion of data volumes are requiring a different paradigm in storage that requires efficiency of storage. Traditional storage architectures based on SAN or NAS have limited ability to meet these new usage models, due to efficiencies & flexibility required in meeting volume scale & storage location requirements (i.e. in a remote data center or cloud service). The way to achieve the goal of efficiency and flexibility is to use scale-out storage architecture that federates the storage according to end-user need and tracks the split (or federation) of the storage using metadata. Scale-out storage is not a new concept but is being commonly used by large Internet portals such as Google and Facebook. With digital content doubling every year and the advent of the federated cloud, scale-out storage is quickly becoming the wave of the future. Such storage can now be deployed using standard Xeon-based servers and Ethernet fabric.For a detailed description, the reference architecture “Scale-out Storage with EMC Atmos*” gathers in one place the essentials of a scale-out storage architecture based on EMC Atmos and Xeon servers. It provides you a recipe to embark on new storage architectures to achieve true cloud federation.Achieve security and transparency with Intel® TXTFederation brings good things, but it also brings the underlying concern of security of a federated environment. How do I know if my remote or federated cloud is secure and compliant to my requirements? One way to achieve security and transparency in a federated infrastructure is to use Intel® Trusted Execution Technology (Intel® TXT). TXT establishes a root of trust in the infrastructure by measuring compliance of platform components, like BIOS, OS, and VMMs (virtual machine managers), during boot. This root is extremely difficult to defeat or subvert and substantially reduces the security risks of using a remote infrastructure. This third reference architecture explains how we built a cloud with VMware vCenter Server*, VMware vSphere Hypervisor*, Intel® Xeon® processor 5600 series-based server platforms, and a plug-in designed to interface with TXT.Within Intel Cloud Builders, there is a wealth of real-world examples. Many more white papers and case studies detail how Intel technologies are utilized as the foundation for storage and security for federated clouds. Look around and let us know if we can help you build a new federated cloud architecture or modify and rework an existing one. Feel free to ask me questions.*Other names and brands may be claimed as the property of others.last_img read more

Platform Is Crucial for Mobile Users with Google Apps

first_imgIn a BYOD workplace, IT Managers face a difficult task – they want to support employees on their chosen devices, but they must also deal with support issues, security challenges, and a workplace using devices with incompatible platforms.As you can see in this example of a hypothetical BYOD workplace, compatibility between device, platform, and software is crucial to teamwork and productivity. Many organizations are turning to cloud-based Google Apps in hopes of standardizing across device. In order to see if this could be the solution to incompatible devices, Prowess Consulting researched the true compatibility of Google Apps across platforms.Their takeaway? The Google Apps experience is not the same on all platforms. Yes, Google Apps users can access their work from any device, but access does not always equal productivity and for business conditions, platform matters. So what’s the best way to reap the benefit of all Google Apps has to offer? Read on to learn more.- IT Peer Network AdministratorProductivity Is More Than ViewingOrganizations that standardize on Google Apps sometimes hastily deploy devices for increasingly mobile users without considering how the platform might impact the user’s ability to be productive with Google Apps. Google’s claim that users can access their files on any device is true, but access is not the same as efficient, productive use. The gap between desktop and mobile browsers underscores a presupposition of the mobile device revolution that tablets are intended to consume content. This presupposition stands in opposition to the Google Apps model, which wants to make users productive anywhere, on any connected device.However, users cannot have a fully productive experience on devices designed primarily for content consumption. When they try, they get an awkward user experience, such as having to type cell ranges for spreadsheet functions manually rather than simply selecting a range of cells. Of the platforms we tested, only the mobile device powered by Intel and Windows 8 supports, through full features and functionality, the fact that mobile users will produce content on the device, not just consume it.Furthermore, and more important to IT departments and those who keep a nervous eye on desktop total cost of ownership (TCO), the functionality gap between mobile apps and desktop browsers means that Android and iOS mobile devices will remain supplemental devices. Deploy iPads or Android tablets for Google Apps users, and users will still need a PC that runs a desktop browser to get full Google Apps functionality.Discover Prowess Consulting’s full, detailed research on Google Apps and platforms.Opens in a new windowhttp://intel.ly/HhEam4Opens in a new windowHow do different mobile devices perform online? Which hide web content from you and your employees?Opens in a new windowIn the comments section or on Twitter, tell us: how are you balancing the demand of consumerization with the needs of IT?Join the social conversations using the hashtags below:#ITCenterOpens in a new window #BYODOpens in a new windowlast_img read more

Unlocking Full Benefits of Internet of Things for Healthcare

first_imgEstimates of the number of IoT (Internet of Things) project 1.9 billion devices today growing to 9 billion by 2018. Already, healthcare has made major strides into the Internet of Things with a myriad of healthcare specific Internet connected devices, or “things” for managing health and wellness through vital signs. For example, multiple healthcare “things” can measure everything from patient activity through multiple vital signs such as blood pressure, glucose levels and so forth. Connecting these “things” to the Internet enables the data to be analyzed, for example, for diagnostics. This has potential to radically transform healthcare enabling better, faster diagnostics, and personalized medicine.Patient conditions can be detected proactively and early, personalized treatment provided, and patients allowed to return home for recovery faster with post treatment monitoring. Healthcare IoT is also poised to empower patients with their data, which historically has been locked inside healthcare organizations and difficult for patients to acquire. Clearly, potential benefits of healthcare IoT are great. Security of IoTConcurrently, privacy and security incidents such as breaches have reached alarming levels globally, both in frequency and impact. Privacy concerns have also been exacerbated in recent years by concerns over surveillance and privacy intrusions from online service providers such as social media platforms. Realizing the benefits of healthcare IoT sans the privacy and security incidents, and doing so in a way that preserves and builds patient trust, requires a proactive approach where privacy and security is built in by healthcare IoT device and service providers. Many healthcare IoT service providers today stream sensitive patient data from the devices, securely over the Internet, to repositories they maintain for secure storage. These repositories enable analytics on the patient data, empowering patients with new insights, knowledge, and enabling them to make better informed decisions on their health and wellness. However, in a sense, these repositories are silos, storing the data from the specific healthcare IoT device and enabling analytics just on that data. Unfortunately for the patient, this data is not automatically available for co-mingling with other data from other healthcare IoT devices provided by other organizations. The result is a limitation in the analytics that can be done and benefits that can be delivered back to the patient. Privacy through separationInterestingly, one of the unintended benefits of silo’ing patient data across separate secure clouds maintained by different healthcare IoT service providers is that privacy and security risk is reduced through separation. If one of the providers is breached, there is a limit to the variety and quantity of sensitive healthcare data at risk. While industry is generally currently in the phase of building out the healthcare IoT, proliferating devices and silos, proactive attention to privacy and security demands that we think ahead to the inevitable next phase. This is where data from different healthcare IoT providers is brought together, further enabling greatly increased benefits, while also greatly increasing privacy and security risks. An intrusion of such an integrated repository of patient data could breach a much greater variety and quantity of sensitive data. Preventing cybercrime in healthcare requires a holistic approach where a combination of administrative, physical, and technical safeguards are used to mitigate privacy and security risks. With cybercriminals using increasingly sophisticated techniques for intrusions, technical controls need to protect the whole stack, from various layers of software right down to the hardware level. With patients and healthcare workers being increasingly empowered with more sensitive data, and tools such as smart devices, apps, social media, wearables and IoT, we need to recognize that many breaches occur from inadvertent user actions that while well intentioned, subject sensitive data to greatly increased privacy and security risks. In addition to securing the hardware and software, we need to secure the user, also empowering them with new visibility into privacy and security risks of their actions, as well as actionable alternatives available to them that both achieve their goals while reducing or eliminating risks.What privacy and security challenges and risks are you seeing from healthcare IoT, and how are you planning to address these?David Houlding, MSc, CISSP, CIPP is a senior privacy researcher with Intel Labs and a frequent blog contributor. Find him on LinkedInKeep up with him on Twitter (@davidhoulding)Check out his previous postslast_img read more

Building Citizen-Centric Government with Mobile Devices

first_imgWith a goal of delivering citizen-centric services, the state launched a pilot to give government employees—in different jobs across multiple agencies—a variety of new mobile devices that can deliver a full range of functions. Mobility was key, because it would let government employees interact with citizens anywhere, saving a lot of time and duplication of effort. Versatility was another top priority, because employees wanted one device that could perform many functions instead of having to switch devices to get their work done. Having one device do multiple jobs would also save the state a lot of money. Now the state’s agencies have the flexibility to select from several device types while cutting the number of devices employees need—whether they’re providing health and human services in a citizen’s home, making a traffic stop in a police cruiser, or inspecting a dairy farm. Plus, the state’s IT department can now manage a large number and variety of devices through a single enterprise management platform. If you’re a government agency anywhere in the world these days, you need to find ways to do more with less. And for the state of Michigan, one big challenge was to make the government better meet the needs of 9.9 million citizens while saving the state money. You can take a look at the state of Michigan’s solution here or read more about it here. To explore more technology success stories, visit www.intel.com/itcasestudies or follow us on TwitterOpens in a new window.center_img Technology was the key. As it kicked off the process of choosing the devices, Michigan decided to go with the Windows 8.1 Enterprise operating system to let users have access to the widest possible variety of applications to get their jobs done. The new devices include tablets and 2 in 1 Ultrabook™ systems—all with Intel® Core™ processors, which deliver the performance for enterprise-grade applications while helping improve energy efficiency with long battery life and rapid recharging. last_img read more

5 Questions for Dr. Giselle Sholler, NMTRC

first_imgIntel: What are the challenges of pediatric oncology and how do you tackle those challenges?Sholler: As a pediatric oncologist, one of the most challenging times is when we’re faced with a child who is not responding to standard therapy and we want to figure out how we can treat this patient. How can we bring hope to that family? A project that we are working on in collaboration with TGen, Dell and Intel has brought that hope to these families.Intel: What is the program?Sholler: When a child has an incurable pediatric cancer, we a take a needle biopsy and send it to TGen where the DNA and RNA sequencing occurs. When ready, that information comes back to the Consortium. Through a significant amount of analysis of the genomic information, we’re able to look at what drugs might target specific mutations or pathways. On a virtual tumor board, we have 15 hospitals across the U.S. and now two international hospitals in Lebanon and France that come together and discuss the patient’s case with the bioinformatics team from TGen. Everyone is trying to understand that patient and with the help of pharmacists create individualized treatment plans for that patient so that patient can have a therapy available to them that might result in a response for their tumor.Intel: Why is precision medicine important?Sholler: Precision medicine is about using the genomic information data form a patient’s tumor to identify which drugs not only will work, but which ones may not work on that patient’s specific cancer. With precision medicine, we can identify the right treatment for a patient. We’re not saying chemotherapy is bad, but for many of our patients chemotherapy is attacking every rapidly dividing cell and leaves our children with a lot of long term side effects. My hope for the future is that as we can target patients more specifically with the correct medications, we can alleviate some of the side effects that we’re seeing in our patients. Half our children with neuroblastoma have hearing loss and need hearing aids for the rest of their lives. They have heart conditions, kidney conditions, liver conditions that we’d like to see if we can avoid in the future.Intel: How does the collaboration work to speed the process?Sholler: The collaboration with Dell and Intel has been critical to making this entire project possible. The grant from Dell to fund this entire program over the last four years has been unparalleled in pediatric cancer. The computer power has also been vital to the success. Three years ago we were doing only RNA expression profile and it took two months; now, we’re doing RNA sequencing and DNA exomes completely and it takes less than two weeks to get the answers for our patients. The data transfer and networking used to entail shipping hard drives a few years ago. Now, we can send a tumor sample from Lebanon to TGen, complete the sequence in a few days and have a report for the tumor board a few days after that. It’s just been amazing to see the speed and accuracy improve for profiling.Intel: Anything else?Sholler: Another very critical piece that Dell has helped provide is the physician portal. Physicians are able to work together across the country, and across the world, and have access to patient records. The database now has grown and grown. When we do see patients, we can also pull up previous patients with similar sequencing or similar profiles, or treated with similar drugs, and see what was used in treatment. And how did they do? What was the outcome? We’re learning more and more with every patient and it doesn’t matter where we live anymore. Everything’s virtual online. It’s just been incredible. Giselle Sholler is the Chair of the Neuroblastoma and Medulloblastoma Translational Research Consortium (NMTRC) and the Director of the Hayworth Innovative Therapeutic Clinic at Helen DeVos Children’s Hospital. The NMTRC is a group of 15 pediatric hospitals across the U.S, plus the American University in Beirut, Lebanon, and Hospital La Timone in Marseilles, France. We sat down recently with Dr. Sholler to talk about to role of precision medicine in her work and how it impacts patients.last_img read more

But Seriously, Mr. President, About Those Salmon …

first_img In his State of the Union speech last night, President Barack Obama got some laughs while talking about the need for reorganizing government to make it more efficient. From the White House transcript: Then there’s my favorite example: The Interior Department is in charge of salmon while they’re in fresh water, but the Commerce Department handles them when they’re in saltwater. (Laughter.) I hear it gets even more complicated once they’re smoked. (Laughter and applause.) The joke was a bit unfair: Experts in salmon management say that shuffling federal agencies isn’t the best way to help salmon. And the punchline touches on an important issue in food safety. Salmon are managed by two agencies for an obvious reason: they are born in streams, grow up in the ocean, and return to streams to reproduce. While salmon are at sea, the National Oceanic and Atmospheric Administration (NOAA) is responsible for them. On land, the job is the legal mandate of the Department of the Interior ‘s Fish and Wildlife Service. So here’s where Obama’s example falls apart: In practice, FWS has delegated most responsibilities to NOAA, so there haven’t been any management problems stemming from the split federal jurisdiction, says Rich Lincoln, of the Wild Salmon Center, a non-profit group based in Portland, Oregon. Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) It’s not clear to Lincoln that reorganizing NOAA and FWS to better handle salmon would even increase administrative efficiencies. “It could lead to a larger, more bureaucratic agency,” he says. “It’s really hard to say.” Lincoln says that protecting habitat and addressing hatcheries would be more effective ways to help salmon. Syma Ebbin of the University of Connecticut, Avery Point, adds that communication and coordination between agencies can go a long way toward effectively managing species that cross political boundaries. “If we can meet that challenge, it will make our management much more resilient.” As for the complications of smoked salmon, Obama may have been referring to food safety. Regulatory authority over food is split between the Food and Drug Administration (FDA) and the U.S. Department of Agriculture, and advocates have argued that a reorganization of federal agencies would improve the safety of the food supply. For a sense of how fractured the system is, consider that FDA regulates sandwiches, but USDA handles open-faced sandwiches. (Not to harp on the joke, but smoked salmon, like all fish, is actually straightforward and covered solely by FDA.) It’s hard to know whether Obama will include food safety in his “proposal to merge, consolidate, and reorganize the federal government in a way that best serves the goal of a more competitive America” that he mentioned last night. But even if he does, says Marion Nestle of New York University, it’s not likely that Congress will approve it; much of the food industry opposes more regulation, she says. Glen MacLarty via Wikimedia Commons last_img read more

Live @ AAAS – Bill Foster on Electing Scientists to Office (Transcript)

first_imgAt noon on Thursday, 17 February, Live @ AAAS will host a live chat here with former Representative Bill Foster, a physicist who is speaking at the AAAS meeting about Albert’s List, the political action committee he is thinking of launching to help scientists become politicians. He’ll discuss that concept, his views on the new lawmakers in town, his stint in Congress, and the relationship between politics, science, and government.Submit your questions to him live at noon or post them beforehand in the comments section below.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;a href=”<a href=”http://www.coveritlive.com/mobile.php/option=com_mobile/task=viewaltcast/altcast_code=415e00e95f&quot;”>http://www.coveritlive.com/mobile.php/option=com_mobile/task=viewaltcast…</a> &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;Live @ AAAS – Bill Foster&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/a&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;last_img read more

Scientists Reconnect With Cluster Mission

first_imgEurope’s Cluster mission is back in the fold after controllers fixed a glitch that would have seriously curtailed its ability to do science. Cluster is comprised of four identical satellites that have been studying Earth’s space environment and its interaction with the solar wind since 2000. They pirouette around each other as they orbit Earth, and data from all four are key to mapping out the space environment in 3D. Each craft carries 11 sensors, of which five make up the Wave Experiment Consortium. It was these five on satellite 3 (dubbed Samba) that failed to respond in March to ground commands. Several weeks of intense work involving scientists, controllers, and the spacecraft manufacturers traced the problem to the simultaneous locking of all five power switches on the instruments—an eventuality that designers had thought too unlikely to consider. Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) The team resorted to what it called a “dirty hack,” a nonstandard procedure that was impossible to test beforehand. During a tense day last month in the control room at the European Space Agency’s space operations center in Darmstadt, Germany, controllers sent up a series of commands that flipped each of the power switches back on. All instruments are now working normally, and team members are trying to make sure that something similar doesn’t happen again.last_img read more

Physicists figure out how to retrieve information from a black hole

first_imgBlack holes earn their name because their gravity is so strong not even light can escape from them. Oddly, though, physicists have come up with a bit of theoretical sleight of hand to retrieve a speck of information that’s been dropped into a black hole. The calculation touches on one of the biggest mysteries in physics: how all of the information trapped in a black hole leaks out as the black hole “evaporates.” Many theorists think that must happen, but they don’t know how.Unfortunately for them, the new scheme may do more to underscore the difficulty of the larger “black hole information problem” than to solve it. “Maybe others will be able to go further with this, but it’s not obvious to me that it will help,” says Don Page, a theorist at the University of Alberta in Edmonton, Canada, who was not involved in the work.You can shred your tax returns, but you shouldn’t be able to destroy information by tossing it into a black hole. That’s because, even though quantum mechanics deals in probabilities—such as the likelihood of an electron being in one location or another—the quantum waves that give those probabilities must still evolve predictably, so that if you know a wave’s shape at one moment you can predict it exactly at any future time. Without such “unitarity” quantum theory would produce nonsensical results such as probabilities that don’t add up to 100%.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)But suppose you toss some quantum particles into a black hole. At first blush, the particles and the information they encode is lost. That’s a problem, as now part of the quantum state describing the combined black hole-particles system has been obliterated, making it impossible to predict its exact evolution and violating unitarity.Physicists think they have a way out. In 1974, British theorist Stephen Hawking argued that black holes can radiate particles and energy. Thanks to quantum uncertainty, empty space roils with pairs of particles flitting in and out of existence. Hawking realized that if a pair of particles from the vacuum popped into existence straddling the black hole’s boundary then one particle could fly into space, while the other would fall into the black hole. Carrying away energy from the black hole, the exiting Hawking radiation should cause a black hole to slowly evaporate. Some theorists suspect information reemerges from the black hole encoded in the radiation—although how remains unclear as the radiation is supposedly random.Now, Aidan Chatwin-Davies, Adam Jermyn, and Sean Carroll of the California Institute of Technology in Pasadena have found an explicit way to retrieve information from one quantum particle lost in a black hole, using Hawking radiation and the weird concept of quantum teleportation.Quantum teleportation enables two partners, Alice and Bob, to transfer the delicate quantum state of one particle such as an electron to another. In quantum theory, an electron can spin one way (up), the other way (down), or literally both ways at once. In fact, its state can be described by a point on a globe in which north pole signifies up and the south pole signifies down. Lines of latitude denote different mixtures of up and down, and lines of longitude denote the “phase,” or how the up and down parts mesh. However, if Alice tries to measure that state, it will “collapse” one way or the other, up or down, squashing information such as the phase. So she can’t measure the state and send the information to Bob, but must transfer it intact.To do that Alice and Bob can share an additional pair of electrons connected by a special quantum link called entanglement. The state of either particle in the entangled pair is uncertain—it simultaneously points everywhere on the globe—but the states are correlated so that if Alice measures her particle from the pair and finds it spinning, say, up, she’ll know instantly that Bob’s electron is spinning down. So Alice has two electrons—the one whose state she wants to teleport and her half of the entangled pair. Bob has just the one from the entangled pair.To perform the teleportation, Alice takes advantage of one more strange property of quantum mechanics: that measurement not only reveals something about a system, it also changes its state. So Alice takes her two unentangled electrons and performs a measurement that “projects” them into an entangled state. That measurement breaks the entanglement between the pair of electrons that she and Bob share. But at the same time, it forces Bob’s electron into the state that her to-be-teleported electron was in. It’s as if, with the right measurement, Alice squeezes the quantum information from one side of the system to the other.Chatwin-Davies and colleagues realized that they could teleport the information about the state of an electron out of a black hole, too. Suppose that Alice is floating outside the black hole with her electron. She captures one photon from a pair born from Hawking radiation. Much like an electron, the photon can spin in either of two directions, and it will be entangled with its partner photon that has fallen into the black hole. Next, Alice measures the total angular momentum, or spin, of the black hole—both its magnitude and, roughly speaking, how much it lines up with a particular axis. With those two bits of information in hand, she then tosses in her electron, losing it forever.But Alice can still recover the information about the state of that electron, the team reports in a paper in press at Physical Review Letters. All she has to do is once again measure the spin and orientation of the black hole. Those measurements then entangle the black hole and the in-falling photon. They also teleport the state of the electron to the photon that Alice captured. Thus, the information from the lost electron is dragged back into the observable universe.Chatwin-Davies stresses that the scheme is not a plan for a practical experiment. After all, it would require Alice to almost instantly measure the spin of a black hole as massive as the sun to within a single atom’s spin. “We like to joke around that Alice is the most advanced scientist in the universe,” he says.The scheme also has major limitations. In particular, as the authors note, it works for one quantum particle, but not for two or more. That’s because the recipe exploits the fact that the black hole conserves angular momentum, so that its final spin is equal to its initial spin plus that of the electron. That trick enables Alice to get out exactly two bits of information—the total spin and its projection along one axis—and that’s just enough information to specify the latitude and longitude of quantum state of one particle. But it’s not nearly enough to recapture all the information trapped in a black hole, which typically forms when a star collapses upon itself.To really tackle the black hole information problem, theorists would also have to account for the complex states of the black hole’s interior, says Stefan Leichenauer, a theorist at the University of California, Berkeley. “Unfortunately, all of the big questions we have about black holes are precisely about these internal workings,” he says. “So, this protocol, though interesting in its own right, will probably not teach us much about the black hole information problem in general.”However, delving into the interior of black holes would require a quantum mechanical theory of gravity. Of course, developing such a theory is perhaps the grandest goal in all of theoretical physics, one that has eluded physicists for decades.last_img read more

Why is it so hard to squash a cockroach?

first_imgInsects, whether they creep or fly, live in a world of hard knocks. Who has not stepped on a cockroach, then raised her shoe to watch the creature get up and scoot under a door? Bees and wasps, for their part, face a never-ending obstacle course of leaves, stems, and petals—bumblebees crash their wings into obstacles as often as once a second. Now, researchers are learning how these creatures bend but don’t break.The results do more than explain why cockroaches are so hard to kill. By mimicking the combination of rigid and flexible parts that gives insect exoskeletons and wings their resilience, biomechanicists are making robots tougher. “Bend but not break is a lot of what happens in these insects,” says Harvard University roboticist Robert Wood. “We’re trying the same thing to see if we can have similar robustness in our robots.”Until recently, most engineers designed for a tough-and-tumble world by making machines stiff and sturdy or agile enough to avoid danger. Modern cars incorporate a third approach: They absorb impacts by crumpling, sacrificing the structure to protect the occupants. “Nature has come up with a tactic that we don’t have,” says David Hu, a mechanical engineer at Georgia Institute of Technology in Atlanta. “Crumple … and then keep on going.”Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)To see how cockroaches do it, integrative biologist Robert Full at the University of California (UC), Berkeley, and Ph.D. student Kaushik Jayaram coaxed the insects through ever smaller slits or tighter tunnels while filming them with a high-speed video camera. They also lowered weights of up to 100 grams onto different parts of the insects’ bodies and watched how the creatures collapsed.Full and Jayaram found that when the 9-millimeter-tall Periplaneta americana approaches a slit no more than 3 millimeters high, the roach first inspects the opening with its antennae. Then it jams its head through, follows with its front legs, and begins pulling the rest of its body into the breach. The back legs splay but continue to push. In about 1 second, it emerges on the far side unscathed. That ability to squeeze through a tight spot “goes far beyond any other animals that we have measured, except maybe the octopus,” says Stacey Combes, a biologist at UC Davis. But an octopus—a model for the “soft” robots some designers are pursuing—can’t match the speed of a cockroach or other arthropods. “Not only insects, but crabs, spiders, and scorpions are pretty good at going anywhere and are pretty indestructible,” Full says.Jayaram and Full’s study, published this week in the Proceedings of the National Academy of Sciences, showed that the cockroach’s secret lies in a hard but still flexible exoskeleton. It consists of hard yet bendable plates—capable of efficiently transmitting energy to its legs—connected by elastic membranes that allow the plates to overlap as the insect compresses. Thanks to spines that give traction when its legs are splayed, a cockroach can scuttle even at maximum scrunch.At a meeting of the Society for Integrative and Comparative Biology last month in Portland, Oregon, Harvard postdoc Andrew Mountcastle reported that a similar blending of hard and soft parts enables bees and wasps to survive their aerial obstacle courses. Using high-speed video, he found that wasp wings actually buckle during collisions and then snap back into place. He also noticed that the wings have a big patch of an elastic protein called resilin about 65% down the wing. He and Combes hypothesized that the patch serves as a hinge.To test the idea, Mountcastle developed a way to mount a wasp on a rotational motor and hit the wing over and over. “He showed the wing can pop out many, many times,” Hu says. When Mountcastle splinted the hinge so the wing couldn’t buckle, the wing quickly wore down. He and Combes also found that many insects have a similar hinge, but that bumblebee wings incorporate a different design principle. The veins that support the bee wing are concentrated close to the body, resulting in a flexible wingtip that can bounce off obstacles with less wear and tear. “It’s different means to the same ends,” Mountcastle says.Both the roach exoskeleton and the insect wings are inspiring robot design. Jayaram has built a 75-millimeter-tall robot, called CRAM, with a roachlike collapsible exoskeleton and legs with “spines” that work both in the uncompressed and compressed positions. It can squeeze to one-half its height and still move 5 to 10 times faster than soft robots, Jayaram says. “What is exciting is that this gives us an order of magnitude reduction in voids where we can deploy robots,” says Robin Murphy of Texas A&M University, College Station, who specializes in robots for disaster search and rescue operations.Mountcastle has joined forces with Jayaram—now also a Harvard postdoc—and Wood to refit hinged wings to an insect-sized flying robot called Robobee. “Designing [it] was not trivial; they are not simple, linear hinges,” Mountcastle said at the Portland meeting. The group hopes begin testing the new design in the real world by spring.Hu applauds the insect-inspired designs: “It would be great to see more robots built with potential damage in mind.” As for killing cockroaches—Jarayam suggests slamming that shoe hard and holding it down.last_img read more

Medical complications cut Everest research expedition short

first_imgEarlier this month, U.K. mountaineer Richard Parks prematurely abandoned his team’s expedition to the summit of Mount Everest in Nepal. He planned to ascend the peak without supplemental oxygen as part of Project Everest Cynllun, and take the highest-elevation blood sample and muscle biopsy ever collected. The project’s original goal was to examine the link between hypoxia and cognitive decline by examining human performance in low-oxygen environments, but its abrupt end has sparked questions of a different sort.The team had for several weeks been climbing smaller peaks to acclimatize to high altitude, and Parks was about to start his second rotation up the mountain: a 2-week stay above the Khumbu Icefall (5486 meters). Damian Bailey, a physiologist at the University of South Wales in the United Kingdom and the lead scientist on the project, decided to perform a blood test on Parks earlier than scheduled. When he drew the blood, he immediately knew something was wrong. “His blood was extraordinarily thick,” Bailey says. “It was actually clotting as I was taking a sample.”Testing revealed that Parks had exceptionally high levels of red blood cells and a high hematocrit, the percentage of the blood’s mass made up of red blood cells. On one hand, this was a clue to Parks’s ability to function in low-oxygen conditions: “His brain was actually getting more oxygen than it would get at sea level,” Bailey says, despite the thin alpine atmosphere containing half the amount of oxygen found at lower elevations. But such high cell densities also put him at increased risk of a stroke or a heart attack. For this reason, the team decided to end the expedition on 3 May despite Parks outwardly seeming in perfectly good health.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) The project still managed to collect data for its original goal of examining the link between hypoxia and cognitive decline. Plus, Bailey hopes to plan a follow-up expedition at some point. But for now, there is more testing to be done back in the lab—and Parks’s unusual physiology has turned out to have implications not just for cognitive decline, but also more directly for would-be Everest climbers.Parks’s exceptionally strong response to altitude suggests that climbers could “overacclimatize,” Bailey says, or put themselves and others in danger by spending too much time at high altitudes in preparation for an ascent. That runs against the prevailing wisdom that thorough acclimatization is a necessity for any ascent without supplemental oxygen.And given Parks’s outward signs of good health, it’s difficult to know how widespread the problem might be: How many climbers are already experiencing these symptoms without knowing it? And should high-altitude specialists be testing for this on the mountain? These aren’t the questions the team meant to provoke—but that doesn’t mean they’re unwelcome. “This is the dynamic of science,” Bailey says. “You can stumble across some findings … that can be just as profound as the original question you wanted to answer.”last_img read more

German university says it will rewrite controversial funding deal

first_imgIn a surprise move, the president of the Johannes Gutenberg University of Mainz in Germany this week announced plans to overhaul controversial contracts governing the use of a €150 million donation from a philanthropic foundation. Critics have charged that the agreement gives the donor, the Boehringer Ingelheim Foundation in Mainz, too much control over publishing decisions and faculty appointments at the school’s Institute of Molecular Biology, which the foundation helped create in 2009.The move, which could eventually influence similar funding arrangements at other German universities, only partly satisfies critics. They are pushing for greater transparency from universities and donors.In a 4 July meeting with journalists, university President Georg Krausch conceded that contract provisions give the foundation the authority to veto faculty appointments made by the university, but said that was not the intent of the agreement, and that the foundation had never blocked an appointment. And he said language requiring the university to get prepublication consent from the foundation for press releases and “publications,” which could include research papers, was an “error.” The intent of such language, he said, was to ensure that research products were of good quality, not to give the funder control. Still, Krausch admitted that the provisions created a perception that the university was not free to act independently. “Throughout all these issues … you can interpret it as quality assurance or exercise of influence,” he said.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) Krausch said the university will now work with foundation officials to revise the problematic language.The regional research ministry, however, suggested such changes weren’t necessary. In a statement to ScienceInsider, the ministry that oversees research in the state of Rhineland-Palatinate, where Mainz is located, noted that giving a funder the ability to veto faculty appointments would violate laws governing higher education and academic freedom. But it said the foundation’s funding agreement didn’t appear to give the foundation that veto, and noted that “there was no appointment against the will of the university,” so “freedom of research and teaching are not affected.” Rhineland-Palatinate Science Minister Konrad Wolf in Mainz also stressed that the institute performs excellent science. “We can be proud of this work—and are deeply grateful to the foundation,” he said in a statement.The ministry’s position is “incomprehensible,” says Michael Hartmer, the director of the German Association of University Professors and Lecturers in Bonn. The ministry does a disservice to science in defending the agreement, says Hartmer, who applauded Krausch’s decision to rewrite the deal.The critics would like to see legislators take stronger action to regulate such deals, which have caused controversy in the past. In particular, they say universities should be required to disclose the details to the public. Eveline Lemke, a member of the Green Party that is a coalition partner of the state government, wants freedom of information laws revised so that they clearly apply to donor agreements. Critics note that the university had declined requests from some reporters to review the BIF agreement, leading to a lawsuit that prompted the university to give all reporters equal access to the documents.Funding conditions should be transparent “to the highest possible level,” says René Röspel, a senior member of Chancellor Angela Merkel’s governing coalition and member of the German parliament in Berlin. It would be the “biggest mistake possible” to hide the details of funding deals, he says. He proposes that the German Council of Science and Humanities, the highest science policy advisory body in the country, develops guidelines for cooperation between science and industry.In a statement, the foundation said that it will continue to support outstanding basic research, and give “maximum freedom” to researchers. “We do not intend to interfere with any university regulation,” a spokesperson told ScienceInsider. “We now wait for potential changes the University of Mainz wishes to make.”last_img read more

Podcast: How farms made dogs love carbs, the role of dumb luck in science, and what your first flu exposure did to you

first_imgThis week, we chat about some of our favorite stories—is Bhutan really a quake-free zone, how much of scientific success is due to luck, and what farming changed about dogs and us—with Science’s Online News Editor David Grimm. Plus, Science’s Alexa Billow talks to Katelyn Gostic of the University of California, Los Angeles, about how the first flu you came down with—which depends on your birth year—may help predict your susceptibility to new flu strains down the road.   Listen to previous podcasts.     [Image:monkeybusinessimages/iStockphoto; Music: Jeffrey Cook]last_img